Final Exam , MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. (10 points). Find the solution set for the the following system of linear equations

$$
\begin{aligned}
x_{1}+2 x_{2} & =1-x_{3} \\
x_{2} & =2-x_{3} \\
x_{1}+3 x_{2} & =3-2 x_{3}
\end{aligned}
$$

QUESTION 2.
(4 points). Given $S=\operatorname{span}\{(1,0,0,1),(1,1,0,1),(1,1,1,1)\}$. Use Gram-Schmidt Algorithm to find an orthogonal basis for S.

$$
\begin{array}{ll}
\hline \text { ABadawi } & \text { 5/18/2016 10:09:06 PM } \\
\text { Sticky Note }
\end{array}
$$

QUESTION 3. (10 points) Let

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 2
\end{array}\right]
$$

(i) Find the inverse matrix of A if it exists.

ABadawi Sticky Note	$5 / 18 / 2016$ 11:36:51 PM	
Again:)) Nothing new! straight forward calculations.		
Just do [A \| I_3] cook it until you get [I_3	A^\{-1\}]	

Just do [A | I_3] cook it until you get [I_3| A^\{-1\}]
(ii) Find the inverse matrix of A^{T} if it exists.

```
ABadawi 5/18/2016 11:58:29 PM
Sticky Note
```

Note No calculation needed here.You already calculated $\mathrm{A}^{\wedge}\{-1\}$ in (i). So $\left(A^{\wedge} T\right)^{\wedge}\{-1\}=\left(A^{\wedge}\{-1\}\right) T$
(iii) Find the third column of the inverse matrix of $A A^{T}$ if it exists.

ABadawi	5/18/2016 11:59:29 PM
Sticky Note	

Here a new idea I did not mention NOTE (AXB)^-1 = $B^{\wedge}-1 X A^{\wedge}-1$. So $(A X A \wedge T)^{\wedge}-1=$ ($\mathrm{A}^{\wedge}-1$) $\mathrm{X}^{\mathrm{X}} \mathrm{A}^{\wedge}-1$ Now you already calculated both inverses in (i) and (ii).
So third column $=\left(A^{\wedge}-1\right) T X$ third column of $A^{\wedge}-1$

QUESTION 4. (6 points). Let $T: R^{3} \longrightarrow R^{3}$ such that $T(a, b, c)=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & -1 & -1\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$. Then T is a linear transformation (DO NOT SHOW THAT).
(i) Find dim (Range) and write the Range as a span of a basis.

ABadawi Sticky Note	$5 / 18 / 2016$ 11:30:37 PM
The given matrix, say M, is the standard matrix representation of T. So Range $=\operatorname{Col}(\mathrm{M}) /$ see class notes	

(ii) Does the point Badawi $=(4,5,0)$ belong to the Range of T ? If yes, find a point, say Ayman $=(a, b, c)$, such that $T($ Ayman $)=$ Badawi

ABadawi	5/18/2016 11:31:30 PM
Sticky Note	

To find the point Ayman $=(a, b, c)$
Solve the system of linear equations $M X=(4,5,0)^{\wedge} T(M$ is the given standard matrix rept). If there is a solution, then $(4,5,0)$ does belong to the range. If no solution, then $(4,5,0)$ does not belong to the range

QUESTION 5. (4 points). Imagine that K is a subspace and $\left\{k_{1}, k_{2}\right\}$ is a basis for K. Is $\left\{k_{1}, k_{1}+k_{2}\right\}$ a basis for K ? Convince me (briefly) that your answer is acceptable.

ABadawi
 Sticky Note

5/19/2016 11:11:38 AM

We only need show K_1, K_1 + K_2 independent Set a_1K_1 + a_2(K_1 + K_2) = O. Show a_1 = a_2 = 0 (normal zero). So (a_1 + a_2)K_1 + a_2K_2 = O
(additive identity O). Since K_1, K_2 independent, a_1 + a_2 = 0 and $a_{-} 2=0$. Hence $a_{-} 1=0$ as well. Done

QUESTION 6. (9 points) For each of the below, if the subset S is a subspace, then rewrite it as a span of some basis, and tell me its dimension. If not a subspace, then give a counter-example.
(i) $S=\left\{(a, b) \in R^{2} \mid(a, b)\right.$ is orthogonal to $\left.(2,-1)\right\}$

ABadawi	5/18/2016 10:21:06 PM
Sticky Note	

Sticky Note
Note $S=\{(a, b) \mid 2 a-b=0, a, b$ in R $\}$.
Hence $\quad S=\{(a, 2 a) \mid a$ in $R\}=\operatorname{span}\{(1,2)\}$.
(ii) $S=\left\{(a, b) \in R^{2} \mid a^{2}+b^{2} \leq 1\right\}$

ABadawi	5/19/2016 12:02:18 AM
Sticky Note	

Note it cannot be written as span. But here note scalor -maultiplation fails. Now $(1,0)$ in S but $2(1,0)=(2,0)$ not in S since $a^{\wedge} 2+b^{\wedge} 2=4+0$ not less or equal to one
(iii) $S=\left\{f(x) \in P_{3} \mid f(0)=3\right\}$

```
ABadawi
                5/18/2016 11:19:59 PM
Sticky Note
Note that S = {a_2x^2 + a_1x + 3} not equal span{}. Another solution x + 3, x^2
+3 in S but if we add them
, then we get }\mp@subsup{x}{}{\wedge}2+x+6 and if we substitute 0 for x, we get 6 not 3
```

QUESTION 7. (11 points).

$$
A=\left[\begin{array}{lllll}
a & b & c & d & e \\
f & g & h & i & j \\
k & l & m & n & o \\
p & q & r & s & t \\
u & v & w & x & y
\end{array}\right]
$$

and suppose that $\operatorname{det}(A)=\pi$.
(i) Find $\operatorname{det}\left(A^{-1}\right), \operatorname{det}\left(2 A^{T}\right)$,

ABadawi	$5 / 18 / 2016$ 11:04:47 PM
Sticky Note	

TRIVIAL QUESTION JUST MY GIFT to all /I mean ALL
(ii) Find the determinant of $B=\left[\begin{array}{lllll}1 & b & c & d & e \\ 0 & 1 & h & i & j \\ 0 & 0 & 1 & n & o \\ 0 & 0 & 0 & 1 & t \\ 0 & 0 & 0 & 0 & 3\end{array}\right]$,

For the matrix B above, what are the eigenvalues of B ? Assume that B is is diagnolizable (Do not show that), for each eigenvalue a of B find $\operatorname{dim}\left(E_{a}\right)$
(iii) Find the determinant of $\left[\begin{array}{ccccc}1 & b & c & d & e \\ 0 & 1 & h & i & j \\ 0 & 0 & 1 & n & o \\ 0 & 0 & 0 & 1 & t \\ 1 & b & c & d & 3+e\end{array}\right]$.

QUESTION 8. (16 points) Determine whether each statement is true or false and give a brief justification for your answer (should not exceed two CLEAR MEANINGFUL lines)
(i) If A is a 3×3 invertible matrix, then A is diagnolizable.

ABadawi Sticky Note

(ii) It is impossible to construct a linear transformation $T: R^{2} \rightarrow R^{4}$ such that $\operatorname{dim}(\operatorname{Range}(T))=3$.

ABadawi 5/19/2016 11:20:56 AM

Sticky Note
True, since $\operatorname{dim}($ Ker $)+\operatorname{dim}($ range $)=\operatorname{dim}$ (domain)
(iii) If A is a 4×4 matrix and 1 is an eigenvalue of A, then there is a nonzero 4×10 matrix B, such that $A B=B$.

ABadawi

True We KNOW AQ^T = $Q^{\wedge} T$ for some point Q in $R^{\wedge} 4$.. Thus Let $B=\left[10\right.$ column, each column is $\left.Q^{\wedge} T\right]$:))))
(iv)

If $T: R^{5} \rightarrow R$ is a linear transformation and $T(1,4,7)=\pi$, then $\operatorname{dim}(\operatorname{Ker}(T))=2$

ABadawi Sticky Note

True/
(v) If A is a 4×5 matrix and $\operatorname{Rank}(A)=4$, then the system $A X=\left[\begin{array}{l}2 \\ 5 \\ 7\end{array}\right]$ has infinitely many solutions

ABadawi
5/18/2016 10:58:51 PM
Sticky Note
True. Since $\operatorname{dim}(\operatorname{col}(A))=4, \operatorname{Col}(A)=R^{\wedge} 4$. Hence every point in $R^{\wedge} 4$ is a linear combination of columns of A.
$\left.\begin{array}{l}\text { (vi) If } A \text { is } 3 \times 3 \text { matrix such that } \operatorname{det}(A)=0 \text { then the svstem } \\ 5 / 19 / 2016 \text { 11:05:18 AM } \\ \begin{array}{l}\text { ABadawi } \\ \text { Sticky Note }\end{array} \\ \hline\end{array}\right]=\left[\begin{array}{l}2 \\ 5 \\ 0\end{array}\right]$ has infinitely many solutions
False/ Maybe infinte or no solution
(vii) If A is a 4×4 matrix and the system $A X=\left[\begin{array}{l}1 \\ 0 \\ 7\end{array}\right]$ is inconsistent (i.e., it has no solution), then the system
$A X=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$ has infinitely many solutions.
ABadawi
5/19/2016 11:04:59 AM
Sticky Note
True. Because $|\mathrm{A}|=0$ and every homogeneous system is consistent and thus must have infinite solution
(viii) If A is a 4×4 matrix and $C_{A}(x)=x^{2}(x-3)^{2}$, then the system $A X=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$ has infinitely many solutions.

ABadawi
5/19/2016 11:04:46 AM
Sticky Note
True, Since 0 is an eigenvalue of $A,|A|=0$. Thus the homogenous system has infinitely many solutions

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
$Q 1$ Let $M=\left[\begin{array}{rrrr}-1 & -2 & 1 & 3 \\ 1 & 0 & 1 & -1 \\ 2 & 1 & 2 & 1\end{array}\right]$. Then the COMPLETE reduced form of of M is
A) $\left[\begin{array}{rrrr}1 & 0 & 1 & -1 \\ 0 & -2 & 2 & 2 \\ 0 & 0 & 1 & 4\end{array}\right]$
B) $\left[\begin{array}{rrrr}1 & 0 & 0 & -5 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 4\end{array}\right]$
C) $\left[\begin{array}{rrrr}1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 4\end{array}\right]$
D) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$
E) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$
$Q 2$ Let M be a $n \times n$ - matrix such that $\operatorname{det}(M) \neq 0$. Which of the following statements is always true
A) M is diagonalizable
B) M has n distinct eigenvalues
C) 0 is an eigenvalue of M
D) It is possible that 0 is an eigenvalue of A^{T}
E) All eigenvalues of M are nonzero

Q3 If $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ is such that $\operatorname{det} A=4$, then the determinant
$\left|\begin{array}{ccc}a-2 d & b-2 e & c-2 f \\ \frac{1}{2} g & \frac{1}{2} h & \frac{1}{2} i \\ 2 d & 2 e & 2 f\end{array}\right|$ is equal to
A) 8
B) 4
C) 2
D) -8
E) -4

Q4 Consider the following subsets of \mathcal{P}_{3} :

$$
\begin{gathered}
R=\left\{f(x) \in \mathcal{P}_{3}: f^{\prime}(2)=0\right\}, S=\left\{f(x) \in \mathcal{P}_{3}: f(1) \geq 0\right\} \\
\text { and } T=\left\{f(x) \in \mathcal{P}_{3}: f(x)+f^{\prime}(x)=0\right\} .
\end{gathered}
$$

Which of these subsets is a subspace of \mathcal{P}_{3} ?
A) R, S, and T
B) R and T only
C) T only
D) S only
E) R only
$Q 5$ Recall that a square matrix A is said to be symmetric if $A^{t}=A$. If A is a square matrix, then
A) $A A^{t}$ and $A-A^{t}$ are symmetric
B) $A+A^{t}$ and $A-A^{t}$ are symmetric
©) $A A^{t}$ and $A+A^{t}$ are symmetric
D) $A A^{t}, A+A^{t}$ and $A-A^{t}$ are symmetric
E) $A A^{t}, A+A^{t}$ and $A-A^{t}$ are not symmetric

Q6 Which of the following sets is a basis for \mathcal{P}_{3}
A) $\left\{1+x+x^{2}, 1+2 x+2 x^{2},-2-3 x-3 x^{2}\right\}$
B) $\left\{1+x+x^{2}, x+x^{2}, 2\right\}$
C) $\left\{x+x^{2}, x+1,-x^{2}+1\right\}$
D) $\left\{1+x+x^{2}, x+x^{2}, x^{2}\right\}$
E) $\left\{1,1+x+x^{2}\right\}$

Q7 If the point $(1, a, b) \in \operatorname{span}\{(1,1,0),(2,1,1),(2,3,-1)\}$. Then
A) $a=0$ and $b=2$
B) $a=1$ and $b=1$
C) $a=1$ and $b=-1$
D) $a=2$ and $b=1$
E) $a=2$ and $b=-1$
$Q 8$ Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$,

$$
T(a, b, c, d)=\left[\begin{array}{cccc}
-3 & 1 & 3 & -2 \\
1 & 1 & -3 & 4 \\
1 & 3 & -5 & 8
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

A) $\operatorname{dim} \operatorname{Range}(T)=2$
B) $\operatorname{dim} \operatorname{Ker}(T)=0$
C) $(-3,3,5)$ is not in $\operatorname{Range}(T)$
В) $\operatorname{Range}(T)=\mathbb{R}^{3}$
E) $\operatorname{Ker}(T)=\operatorname{span}\{(0,1,1,0)\}$
$Q 9$ Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation such that $\operatorname{Kert}(T)=\{(0,0, \ldots, 0)\}$ and $\operatorname{Range}(T)=R^{m}$. Let M be the standard matrix representation of T. then
A) $n<m$ and $\operatorname{dim}(\operatorname{Row}(M))=n$
B) $n>m$ and $\operatorname{dim}(\operatorname{Col}(M))=m$
C) It is possible that $\operatorname{det}(M)=0$.
D) $n=m$
E) It is impossible that $M=M^{T}$
$Q 10$ Let $T: R^{2} \rightarrow P_{2}$ be a linear transformation such that $T(1,1)=x$ and $T(-1,1)=$ 2. Then $T(0,4)=$
A) $2 x+4$
B) $x+4$
C) $2 x+2$
D) 4
E) $4 x+8$

Q11 The following system of linear equations:

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 0 & 1 \\
0 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
6 \\
5 \\
0
\end{array}\right]
$$

A) has a unique solution
B) has infinitely many solutions
C) has $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ as a solution
P) has no solution
E) has $\left[\begin{array}{c}-5 \\ 0 \\ 0\end{array}\right]$ as a solution
$Q 12$ Let $T: R^{2} \rightarrow \mathbb{P}_{2}$ be a linear transformation such that $T(a, b)=(a+3 b) x+$ $(2 a+6 b)$. Then the fake standard matrix representation of T is
A) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
B) $\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right]$
C) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
D) $\left[\begin{array}{ll}3 & 6 \\ 1 & 2\end{array}\right]$
E) $\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]$
$Q 13$ Let T as above then:
A) $\operatorname{Ker}(T)=\{(0,0)\}, \operatorname{Range}(T)=\operatorname{span}\{x\}$
B) $\operatorname{Ker}(T)=\{(0,0)\}, \operatorname{Range}(T)=\operatorname{Span}\{x+2\}$
C) $\operatorname{Ker}(T)=\operatorname{span}\{(1,-3)\}, \operatorname{Range}(T)=\operatorname{Span}\{x+2\}$
D) $\operatorname{Ker}(T)=\operatorname{span}\{(-3,1)\}$, Range $(T)=\operatorname{Span}\{x\}$
E) $\operatorname{Ker}(T)=\operatorname{span}\{(-6,2)\}, \operatorname{Range}(T)=\operatorname{Span}\{x+2\}$
$Q 14$ Let $M=\left[\begin{array}{cc}a^{2} & a^{3} \\ 1 & a^{4}\end{array}\right]$. Which of the following statements is always true
A) When M is invertible, $M^{-1}=\left[\begin{array}{cc}\frac{a}{a^{3}-1} & \frac{-1}{a^{3}-1} \\ \frac{1}{a^{3}\left(a^{3}-1\right)} & \frac{1}{a\left(a^{3}-1\right)}\end{array}\right]$
B) $\operatorname{det} M=0$ only if $a=1$
C) M is invertible only if $a \neq 0$
D) When M is invertible, $M^{-1}=\left[\begin{array}{cc}\frac{1}{a\left(a^{3}-1\right)} & \frac{-1}{a^{3}-1} \\ \frac{-1}{a^{3}\left(a^{3}-1\right)} & \frac{a}{a^{3}-1}\end{array}\right]$
E) M is row equivalent to I_{2}

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

