© copyright Ayman Badawi 2015

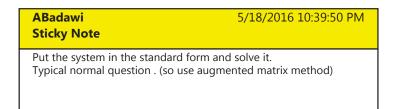
MTH 221 Linear Algebra Spring 2015, 1–7

Final Exam, MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. (10 points). Find the solution set for the the following system of linear equations

$$x_1 + 2x_2 = 1 - x_3$$
$$x_2 = 2 - x_3$$
$$x_1 + 3x_2 = 3 - 2x_3$$



QUESTION 2.

(4 points). Given $S = span\{(1,0,0,1), (1,1,0,1), (1,1,1,1)\}$. Use Gram-Schmidt Algorithm to find an orthogonal basis for S.

 ABadawi
 5/18/2016 10:09:06 PM

 Sticky Note
 5/18/2016 10:09:06 PM

 Typical normal question (just use my class notes). No ideas/ only straight forward calculation

QUESTION 3. (10 points) Let

$$A = \left[\begin{array}{rrrr} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{array} \right]$$

(i) Find the inverse matrix of A if it exists.

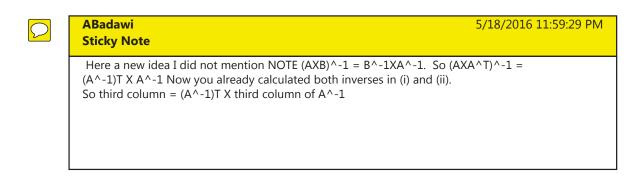
ABadawi Sticky Note 5/18/2016 11:36:51 PM

Again:)) Nothing new! straight forward calculations. Just do [A | I_3] cook it until you get [I_3 | A^{-1}]

(ii) Find the inverse matrix of A^T if it exists.

ABadawi Sticky Note	5/18/2016 11:58:29 PM
Note No calculation needed here. You already calculated A^{-1} in (i) So (A^T)^{-1} = (A^{-1})T	

(iii) Find the third column of the inverse matrix of AA^T if it exists.



QUESTION 4. (6 points). Let $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ such that $T(a, b, c) = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$. Then T is a linear transformation of the point of the

mation (DO NOT SHOW THAT).

(i) Find dim(Range) and write the Range as a span of a basis.

 \mathcal{D}

ABadawi Sticky Note	5/18/2016 11:30:37 PM
The given matrix , say M, is the standard matrix representation of T. So Range = Col(M)/ see class notes	

(ii) Does the point Badawi = (4, 5, 0) belong to the Range of T? If yes, find a point, say Ayman = (a, b, c), such that T(Ayman) = Badawi

ABadawi Sticky Note	5/18/2016 11:31:30 PM
To find the point Ayman = (a, b, c) Solve the system of linear equations $MX = (4, 5, 0)^T$ (M is the given standard matrix rept). If there is a solution, then (4, 5, 0) does belong to the range. If no solution, then (4, 5, 0) does not belong to the range)

QUESTION 5. (4 points). Imagine that K is a subspace and $\{k_1, k_2\}$ is a basis for K. Is $\{k_1, k_1 + k_2\}$ a basis for K? Convince me (briefly) that your answer is acceptable.

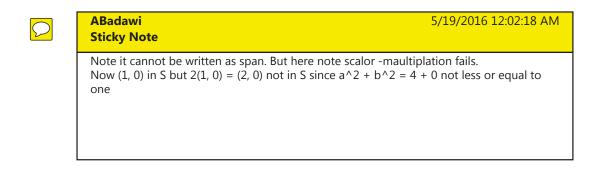
5	ABadawi 5/19/2016 11:11:38 AM Sticky Note 5/19/2016 11:11:38 AM
	We only need show K_1, K_1 + K_2 independent Set $a_1K_1 + a_2(K_1 + K_2) = 0$. Show $a_1 = a_2 = 0$ (normal zero). So $(a_1 + a_2)K_1 + a_2K_2 = 0$
	(additive identity O). Since K_1, K_2 independent, $a_1 + a_2 = 0$ and $a_2 = 0$. Hence $a_1 = 0$ as well. Done

QUESTION 6. (9 points) For each of the below, if the subset S is a subspace, then rewrite it as a span of some basis, and tell me its dimension. If not a subspace, then give a counter-example.

(i) $S = \{(a, b) \in \mathbb{R}^2 \mid (a, b) \text{ is orthogonal to } (2, -1)\}$

ABadawi Sticky Note	5/18/2016 10:21:06 PM
Note S = {(a, b) 2a - b = 0, a, b in R}. Hence S = {(a, 2a) a in R} = span {(1, 2)}.	

(ii) $S = \{(a, b) \in \mathbb{R}^2 \mid a^2 + b^2 \le 1\}$



(iii) $S = \{f(x) \in P_3 \mid f(0) = 3\}$

ABadawi Sticky Note	5/18/2016 11:19:59 PM
Note that $S = \{a_2x^2 + a_1x + 3\}$ not equal spar + 3 in S but if we add them , then we get $x^2 + x + 6$ and if we substitute 0 fo	

Ayman Badawi

QUESTION 7. (11 points).

A =	a	b	c	d	e
	f	g	h	i	j
A =	k	l	m	n	0
	p	q	r	s	t
	u	v	w	x	<i>y</i>

and suppose that $det(A) = \pi$.

(i) Find det
$$(A^{-1})$$
, $det(2A^T)$,

ABadawi Sticky Note	5/18/2016 11:04:47 PM
TRIVIAL QUESTION	JUST MY GIFT to all /I mean ALL

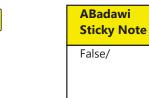
(ii) Find the determinant of
$$B = \begin{bmatrix} 1 & b & c & d & e \\ 0 & 1 & h & i & j \\ 0 & 0 & 1 & n & o \\ 0 & 0 & 0 & 1 & t \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$
,

For the matrix B above, what are the eigenvalues of B? Assume that B is is diagnolizable (Do not show that), for each eigenvalue a of B find $dim(E_a)$

	1	b	c	d	e]
(iii) Find the determinant of	0	1	h	i	j	
(iii) Find the determinant of	0	0	1	n	0	.
	0	0	0	1	t	
	1	b	c	d	3 + e	

QUESTION 8. (16 points) Determine whether each statement is true or false and give a brief justification for your answer (should not exceed two <u>CLEAR MEANINGFUL</u> lines)

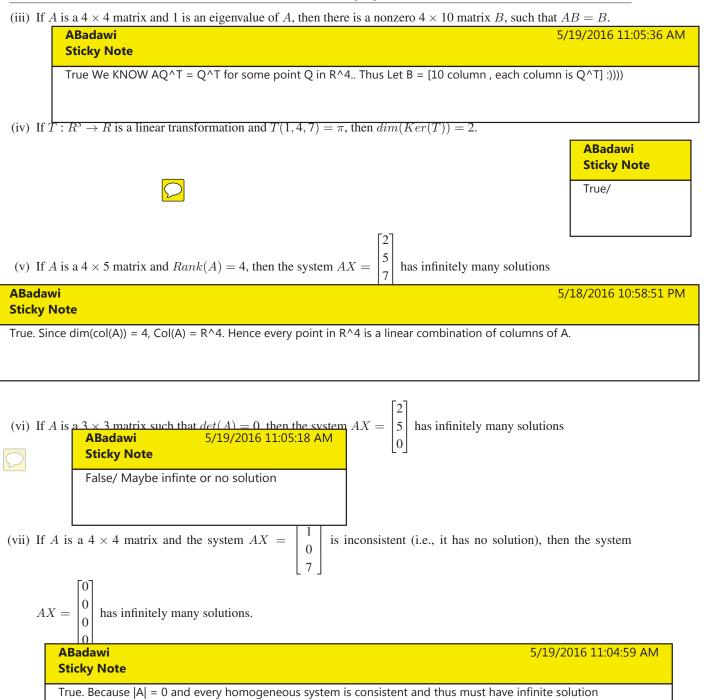
(i) If A is a 3×3 invertible matrix, then A is diagnolizable.



(ii) It is impossible to construct a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^4$ such that dim(Range(T)) = 3. **ABadawi** $5/19/2016 \ 11:20:56 \ AM$

ABadawi Sticky Note

True, since dim(Ker) + dim(range) = dim (domain)



(viii) If A is a 4 × 4 matrix and $C_A(x) = x^2(x-3)^2$, then the system $AX =$	0 0 0 0	has infinitely many solutions.
--	------------------	--------------------------------

many solutions
ma

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

7

$$\boxed{Q1} \text{ Let } M = \begin{bmatrix} -1 & -2 & 1 & 3 \\ 1 & 0 & 1 & -1 \\ 2 & 1 & 2 & 1 \end{bmatrix}. \text{ Then the COMPLETE reduced form of } M \text{ is}$$

$$A) \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & -2 & 2 & 2 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$

$$B) \begin{bmatrix} 1 & 0 & 0 & -5 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$

$$C) \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$

$$D) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$E) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

5

Q2 Let M be a $n \times n$ - matrix such that $det(M) \neq 0$. Which of the following statements is **always true**

- A) M is diagonalizable
- B) M has n distinct eigenvalues
- C) 0 is an eigenvalue of M
- D) It is possible that 0 is an eigenvalue of A^T
- **E)** All eigenvalues of M are nonzero

$$\boxed{Q3} \text{ If } A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \text{ is such that det } A = 4 \text{, then the determinant}$$
$$\begin{vmatrix} a - 2d & b - 2e & c - 2f \\ \frac{1}{2}g & \frac{1}{2}h & \frac{1}{2}i \\ 2d & 2e & 2f \end{vmatrix} \text{ is equal to}$$
A) 8
B) 4
C) 2
D) -8
E) -4

7

Q4 Consider the following subsets of \mathcal{P}_3 :

$$R = \{ f(x) \in \mathcal{P}_3 : f'(2) = 0 \}, \ S = \{ f(x) \in \mathcal{P}_3 : f(1) \ge 0 \}$$

and $T = \{ f(x) \in \mathcal{P}_3 : f(x) + f'(x) = 0 \}.$

Which of these subsets is a subspace of \mathcal{P}_3 ?

A) R, S, and T

B) R and T only

C) T only

D) S only

E) R only

Q5 Recall that a square matrix A is said to be symmetric if $A^t = A$. If A is a square matrix, then

- A) AA^t and $A A^t$ are symmetric
- B) $A + A^t$ and $A A^t$ are symmetric
- \bigcirc AA^t and $A + A^t$ are symmetric
- D) AA^t , $A + A^t$ and $A A^t$ are symmetric
- E) AA^t , $A + A^t$ and $A A^t$ are not symmetric

Q6 Which of the following sets is a basis for \mathcal{P}_3

A) $\{1 + x + x^2, 1 + 2x + 2x^2, -2 - 3x - 3x^2\}$ B) $\{1 + x + x^2, x + x^2, 2\}$ C) $\{x + x^2, x + 1, -x^2 + 1\}$ D) $\{1 + x + x^2, x + x^2, x^2\}$ E) $\{1, 1 + x + x^2\}$

 Q7 If the point $(1, a, b) \in span\{(1, 1, 0), (2, 1, 1), (2, 3, -1)\}$. Then

 A) a = 0 and b = 2

 B) a = 1 and b = 1

 C) a = 1 and b = -1

 D) a = 2 and b = 1

E) a = 2 and b = -1

 $\boxed{Q8} \text{ Let } T : \mathbb{R}^4 \to \mathbb{R}^3,$

$$T(a, b, c, d) = \begin{bmatrix} -3 & 1 & 3 & -2 \\ 1 & 1 & -3 & 4 \\ 1 & 3 & -5 & 8 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

A) dim Range(T) = 2

- B) dim Ker(T) = 0
- C) (-3,3,5) is not in Range(T)
- $\mathbf{D} Range(T) = \mathbb{R}^3$
- E) $Ker(T) = span\{(0, 1, 1, 0)\}$

Q9 Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation such that $Kert(T) = \{(0, 0, ..., 0)\}$ and $Range(T) = R^m$. Let M be the standard matrix representation of T. then

A) n < m and dim(Row(M)) = n

B) n > m and dim(Col(M)) = m

C) It is possible that det(M) = 0.

 $\mathbf{D} n = m$

E) It is impossible that $M = M^T$

Q10 Let $T : R^2 \to P_2$ be a linear transformation such that T(1, 1) = x and T(-1, 1) = 2. Then T(0, 4) =

- **A)** 2*x* + 4
- B) *x* + 4
- C) 2*x* + 2
- D) 4
- E) 4*x* + 8

Q11 The following system of linear equations:

$$\begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \\ 0 & 2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 5 \\ 0 \end{bmatrix}$$

A) has a unique solution

B) has infinitely many solutions

C) has
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 as a solution

D) has no solution

E) has
$$\begin{bmatrix} -5\\0\\0 \end{bmatrix}$$
 as a solution

Q12 Let $T : \mathbb{R}^2 \to \mathbb{P}_2$ be a linear transformation such that T(a, b) = (a + 3b)x + (2a + 6b). Then the fake standard matrix representation of T is

$$\begin{array}{c} A) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ \hline B & \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \\ C) \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\ D) \begin{bmatrix} 3 & 6 \\ 1 & 2 \end{bmatrix} \\ E) \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$$

Q13 Let T as above then: A) $Ker(T) = \{(0,0)\}, Range(T) = span\{x\}$

B) $Ker(T) = \{(0,0)\}, Range(T) = Span\{x+2\}$

C) $Ker(T) = span\{(1, -3)\}, Range(T) = Span\{x + 2\}$

D) $Ker(T) = span\{(-3, 1)\}, Range(T) = Span\{x\}$

E) $Ker(T) = span\{(-6,2)\}, Range(T) = Span\{x+2\}$

Q14 Let $M = \begin{bmatrix} a^2 & a^3 \\ 1 & a^4 \end{bmatrix}$. Which of the following statements is **always true**

A) When *M* is invertible,
$$M^{-1} = \begin{bmatrix} \frac{a}{a^3 - 1} & \frac{-1}{a^3 - 1} \\ \frac{-1}{a^3(a^3 - 1)} & \frac{1}{a(a^3 - 1)} \end{bmatrix}$$

B) det M = 0 only if a = 1

C) M is invertible only if $a \neq 0$

D) When *M* is invertible,
$$M^{-1} = \begin{bmatrix} \frac{1}{a(a^3 - 1)} & \frac{-1}{a^3 - 1} \\ \frac{-1}{a^3(a^3 - 1)} & \frac{a}{a^3 - 1} \end{bmatrix}$$

E) M is row equivalent to I_2

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com